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OVERVIEW

• Goal of integrated modeling
– A predictive simulation model of fusion plasma dynamics with 

realistic parameters and geometry
• Constraints imposed by physics, algorithms, and hardware

– 3-D fluid-based model is only practical approach
– More detailed physics, longer time scale models must be 

integrated into this central module
• The computational challenges of fluid model:

– Extreme separation of time scales
– Extreme separation of spatial scales
– Extreme anisotropy
– Importance of geometry, boundary conditions
– Causality: can’t parallelize over time!

At least a challenging as hydrodynamic turbulence!
• Present computational approaches:

– Implicit time differencing
– Specialized spatial grids

• Status of present models
• Vision for integrated modeling



DESIRED PREDICTABILITY: MODAL DYNAMICS

1/1 sawteeth

3/2 NTM
2/1 wall locking

Disruption

•Sawtoothing discharge
•3/2 NTM triggered at 2250 msec
•2/1 locks to the wall

Example: DIII-D shot 86144



DESIRED PREDICTABILITY: DISRUPTION

• Increase in neutral beam 
power

• Plasma pressure increases
• Sudden termination 

(disruption)

• Time dependence at 
disruption onset

• Growing 3-D magnetic 
perturbation

• Nonlinear evolution?
• Effect on confinement?
• Can this be predicted?

Example: DIII-D shot 87009



PREDICTIVE MODEL OF PLASMA DYNAMICS

• Magnetic perturbations
 Electromagnetic model

• Slow evolution
 1 msec. - 1 sec. problem time

• Plasma shaping
 Realistic geometry required

• High temperature
 Large “Reynolds’ numbers”

• Low collisionality
 Kinetic (velocity space) physics affects global evolution

• Strong magnetic field
 Dynamics are highly anisotropic

• Resistive wall
 Non-ideal boundary conditions

• Sources
 RF and beam interaction with plasma for heating, current 

drive
• Engineering calculations

 Heat loads, stresses, etc.



FUSION SCIENCE MODELS
• Source models (fastest time scales; light waves)

– Interaction of RF waves  or neutral beams with static 2-D 
background plasma

– Sources of heat, mass, and electric field
• Global kinetic models (first-principles; particle time scales)

– Solve kinetic (“gyrokinetic”) equations
– 5 dimensional (3 space, 2 velocity) + time
– Provide direct calculation of anomalous transport

• Fluid (MHD) models (low frequency; no particles)
– 3 space dimensions (realistic geometry)
– Single fluid (lumped ions and electrons)
– Time dependent, temporally very stiff
– No kinetic (particle) effects

• Extended fluid models (fluid; non-conventional closures)
– Separate fluids for ions and electrons
– Non-fluid effects through low dimensional or analytic 

“closures”
• Transport models (long time scale; low dimensionality; no inertia)

– “1.5” dimensional, axisymmetric geometry
– Time dependent, long time evolution
– No waves: force balance + diffusion with sources

Disparate models must be “integrated” for predictive capability



A CONSTRAINT ON ALGORITHMS

Algorithms:
• N - # of meshpoints for each 

dimension
• α - # of dimensions

– 1.5 - transport
– 3 (spatial) fluid 
– 5-6 kinetic  (spatial + 

velocity)
• Q - code-algorithm 

requirements (Tflop / 
meshpoint / timestep)

• ∆t - time step (seconds)

Constraints:
• P - peak hardware 

performance (Tflop/sec)
• ε - hardware efficiency

– εP - delivered sustained 
performance

• T - problem time duration 
(seconds)

• C - # of cases / year
– 1 case / week ==> C ~ 50

  

NαQ
∆t

Algorithms
1 2 3 

= 3 ×107 εP
CT

Constraints
{

Balance of algorithm performance and model requirements with available cycles



PERFORMANCE CONSTRAINTS

Assumptions:
• Performance is delivered
• Implicit algorithm
• Q ind. of ∆t (!!)
Requirements:
• At least 3-D physics required
• Required problem time: 1 msec -

1 sec
Conclusions:
• 3-D (i.e., fluid) calculations for 

times of ~ 10 msec within reach
• Longer times require next 

generation computers (or better 
algorithms) 

• Higher dimensional (kinetic) 
long time calculations 
unrealistic

• Integrated kinetic effects must 
come through low 
dimensionality fluid closures

3-D  extended fluid calculation must form basis of integrated model

????



A 3-D FLUID BASED MODEL FOR INTEGRATION
• Cannot afford higher dimensionality for experimental time scales!
• Capture kinetic effects through 2-fluid closures

– Analytic
– Heuristic
– Minority species (e.g., energetic ions)

• Can represent vacuums, realistic geometry and boundary 
conditions

• Produces data necessary for other integration components
– Edge models

• Details of specialized plasma regions
– Kinetic theory models

• First principles tests of closures and sub-grid scale 
physics

– Source models
• Details of heating and fueling

– Transport models
• Longer time scale evolution

– Engineering models
• Stresses on components, etc.



CLOSURES FOR FLUID MODELS

• Kinetic models of plasmas based on distribution function for 
each charge species

• Satisfies kinetic equation

fα x,v,t( ) - six dimensions plus time

- computationally impractical for time scales of interest
• Fluid models derived by taking successive velocity moments of 

kinetic equation 
– Reduce dimensionality by 3

• Hierarchy of equations for n, v, p, Π, q, …….
• Equations truncated by closure relations

– Express high order moments in terms of low order moments
– Capture kinetic effects in these moments

dfα

dt
= C fα ,fβ[ ]

β
∑



2-FLUID MODEL

• Momentum, energy, and continuity for each species (α = e, i):

mαnα
∂vα
∂t

+ vα ⋅∇vα
 
  

 
  

= −∇ ⋅Pα + qαnα E + vα × B( )+ Rαβ
β
∑ + Sα

m

• Maxwell (no displacement current):

• Current and quasi-neutrality:

∂B
∂t

= −∇ × E   ,          ∇ ×B = µ0J    ,

∂pα
∂t

+ vα ⋅∇pα = −
3
2

pα ∇⋅ vα − Pα : ∇vα − ∇⋅ qα + Qα

∂nα
∂t

= −∇⋅ nα vα( )+ Sα
n

Jα = nαqαvα ,       n = ne = Zni  



SINGLE FLUID FORM
• Add electron and ion momentum equations:

• Subtract electron and ion momentum equations (Ohm’s law):

ρ
∂v
∂t

+ v ⋅∇v
 
  

 
  

= −∇⋅ ′ P + J × B

All effects beyond resistivity constitute Extended MHD

  

E = − v ×B
Ideal  MHD
1 2 3 + ηJ

Resistive  MHD
{ +

1
ne

1− ν
1+ ν

J×B

Hall  Effect
1 2 4 4 3 4 4 

          − 1
ne (1+ ν )

∇ ⋅ ′ P e − ν ′ P i( )

Diamagnetic  Effects
and Closures

1 2 4 4 4 4 3 4 4 4 4 
+ 1

ε0ωpe
2 (1+ ν )

∂J
∂t

+ ∇ ⋅ vJ+ Jv( ) 
  

 
  

Electron  Inertia
1 2 4 4 4 4 4 3 4 4 4 4 4 



COMPUTATIONAL CHALLENGES

• Extreme separation of time scales

– Realistic “Reynolds’ numbers”

– Implicit methods

• Extreme separation of spatial scales

– Important physics occurs in internal boundary layers

– Small dissipation cannot be ignored

– Requires grid packing or adaptation

• Extreme anisotropy

– Special direction determined by magnetic field

operator is importantAccurate treatment of B ⋅ ∇

- Requires specialized gridding

At least as challenging as hydrodynamic turbulence!



1. SEPARATION OF TIME SCALES

Require implicit methods

∆t     <      
∆x
L

τA      ≈      
τA

N
     <<<<      τ evol

S   =
τR

τA

  ~   10 8   >> 1Lundquist number:

Explicit time step impractical:

  
τA

Affvén  transit  time
{  <    τS

Sound  transit  time
{     <<     τevol

MHD  evolution  time
{   <<     τR

Resistive  diffusion  time
{



IMPLICIT METHODS

• Partially implicit methods

– Treat fastest time scales implicitly

– Time step still limited by waves

• Semi-implicit methods

– Treat linearized ideal MHD operator implicitly

– Time step limited by advection

– Many iterations

• Fully implicit methods

– Newton-Krylov treatment of full nonlinear equations

– Arbitrary time step

– Still a research project



EXAMPLE: IDEAL MHD 

• Linearized, ideal MHD wave equation

• Wide spectrum of normal modes

• Highly anisotropic spatial operator

• Basis of many implicit formulations

• Not a simple Laplacian

• Requires specialized pre-conditioners

Challenge: find optimum algorithm for inverting this operator 

with CFL ~ 1000

ρ0
∂2v
∂t 2

= ∇ × ∇ × v ×B0( )×B0



LINEAR SOLVER REQUIREMENTS

• Extremely large condition number :  >  10
10

!!

– Specialized pre-conditioners

– Anisotropy

• Ideal MHD is self-adjoint

– Symmetric matrices

– CG

• Advection and some 2-fluid effects (whistler waves) are not self-
adjoint

– Need for efficient non-symmetric solvers

• Everything must be efficient and scalable in parallel

• Should interface easily with F90



2. SEPARATION OF SPATIAL SCALES

• Important dynamics occurs in internal boundary layers

– Structure is determined by plasma resistivity or other 

dissipation

– Small dissipation cannot be ignored

• Long wavelength along magnetic field

• Extremely localized across magnetic field:

δ /L ~    S-α <<  1  for  S >>  1

• It is these long, thin structures that evolve nonlinearly on 

the slow evolutionary time scale



3. EXTREME ANISOTROPY

• Magnetic field locally defines special direction in space

• Important dynamics are extended along field direction, very 
narrow across it

• Propagation of normal modes (waves) depends strongly on 
local field direction

• Transport (heat and momentum flux) is also highly 
anisotropic

==>  Requires accurate treatment of operator B ⋅ ∇

Inaccuracies lead to “spectral pollution” and
anomalous perpendicular transport



GRIDDING AND SPATIAL REPRESENTATION

• Spatial stiffness and anisotropy require special gridding
– Toroidal and poloidal dimensions treated differently

• Toroidal (φ, primarily along field)
– Long wavelengths, periodicity => FFTs (finite 

differences also used)
• Poloidal plane (R,Z)

– Fine structure across field direction
– Grids aligned with flux surfaces (~ field lines)
– Unstructured triangular grids
– Extreme packing near internal boundary layers

• Finite elements
– High order elements essential for resolving anisotropies

• Dynamic mesh adaptation in research phase



POLOIDAL GRIDS

Poloidal grids from SciDAC development projects

DIII-D poloidal cross-section with
flux aligned grid (NIMROD) 

Circular poloidal cross-section with
triangles and grid packing (M3D)



BEYOND RESISTIVITY - EXTENDED MHD

• 2-fluid effects
– Whistler waves (Hall term) require implicit advance with 

non-symmetric solver
– Electron inertia treated implicitly
– Diamagnetic rotation may cause accuracy, stability 

problems
• Kinetic effects - influence of non-Maxwellian populations

– Analytic closures
• Seek local expressions for Π, q, etc.

– Particle closures
• Subcycle gyrokinetic δf calculation
• Minority ion species - beam or α-particles



STATUS

• 2 major SciDAC development projects for time-dependent models
– M3D - multi-level, 3-D, parallel plasma simulation code

• Partially implicit
• Toroidal geometry - suitable for stellarators
• 2-fluid model
• Neo-classical and particle closures

– NIMROD - 3-D nonlinear extended MHD
• Semi-implicit
• Slab, cylindrical, or axisymmetric toroidal geometry
• 2-fluid model 
• Neo-classical closures
• Particle closures being implemented

Both codes have exhibited good parallel performance scaling
• Other algorithms are being developed in the fusion program



STATUS - RESISTIVE MHD

Sawtooth in NSTX computed by M3D Secondary magnetic islands 
generated during

sawtooth crash in DIII-D shot 
86144 by NIMROD



STATUS - EXTENDED MHD

• Effect of energetic particles on 
MHD instability

• Subcycling of kinetic calculation

• Effect of trapped electrons and 
ions on resistive stability

• Analytic/heuristic fluid closure



NEXT STEP - INTEGATED MODELING
• Non-local kinetic physics, MHD, and profile evolution are all inter-

related 
– Kinetic physics determines transport coefficients
– Transport coefficients affect profile evolution
– Profile evolution can destabilize of MHD modes
– Kinetic physics can affect nonlinear MHD evolution (NTMs, 

TAEs)
– MHD relaxation affects profile evolution
– Profiles affect kinetic physics

• Effects of kinetic (sub grid scale) physics must be synthesized 
into MHD models
– Extensions to Ohm’s law (2-fluid models)
– Subcycling/code coupling 
– Theoretical models (closures), possibly heuristic

• Effects of MHD must be synthesized into transport models
• Predictions must be validated with experimental data



VISION: SAWTOOTH CYCLE

EQUILIBRIUM
RECONSTRUCTION

EXPERIMENTAL
DATA

TRANSPORT
MODULE

GK CODE:
TRANSPORT

COEFFICIENTS

LINEAR
STABILITY
CODE WITH

ENERGETIC PARTICLES

STABLE?

UNSTABLE?

NONLINEAR
EXTENDED MHD

CODE
SIMULATION DATA

ENERGETIC
PARTICLE
MODULE

RELAXED
PROFILES

COMPARISON



ENABLING COMPUTER SCIENCE TECHNOLGIES
• Largest, fastest computers!

– But intermediate computational resources often neglected, 
and…

– The computers will never be large or fast enough!
• Algorithms

– Parallel linear algebra
– Gridding, adaptive and otherwise

• Data structure and storage
– Adequate storage devices
– Common treatment of experimental and simulation data
– Common tools for data analysis

• Communication and networking
– Fast data transfer between simulation site and storage site
– Efficient worldwide access to data
– Collaborative tools
– Dealing with firewalls

• Advanced graphics and animation



SUMMARY

• Predictive simulation capability has 3 components
– Code and algorithm development
– Tightly coupled theoretical effort
– Validation of models by comparison with experiment

• Integration required for:
– Coupling algorithms for disparate physical problems
– Theoretical synthesis of results from different models
– Efficient communication and data manipulation

• Extended MHD is the only practical central element for integrated 
modeling
– Only model that can address realistic geometry and time 

scales with foreseeable resources 
• Progress is being made in Extended MHD

– Integration of energetic ion modules into 3-D MHD
– Computationally tractable closures
Need to bring a broader range of algorithms and codes to bear 

for overall fusion problem 


